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Abstract
We investigate the chaotic lowest energy region of the simplified breathing
circular billiard, a two-dimensional generalization of the Fermi model. When
the oscillation amplitude of the breathing boundary is small and we are near
the integrable to non-integrable transition, we obtain numerically that average
quantities can be described by scaling functions. We also show that the map
that describes this model is locally equivalent to Chirikov’s standard map in
the region of the phase space near the first invariant spanning curve.

PACS numbers: 05.45.−a, 05.45.Pq

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since Fermi reported his model to describe the cosmic ray acceleration [1], different models
have been developed and studied under different applications. The simplest one-dimensional
case, the Fermi–Ulam model [2, 3], consists of a classical particle bouncing between a fixed
wall and a moving one. Pustylnikov proposed the bouncer model [4], a variation of the Fermi
model in which a particle under gravitational acceleration hits an oscillating platform. While
the former model does not present unlimited energy growth, the so-called Fermi acceleration,
due to existence of invariant spanning curves [5], the last model does present it. Such unlimited
energy growth occurs for some windows of parameter values and initial conditions due to the
accelerator modes [4, 6, 7] and outside these windows due to diffusion in the phase space [8].

In two dimensions, the static case is represented by a billiard. Now a particle moves
with constant velocity inside a region of the plane and hits elastically the boundary. These
models have been used in classical and statistical mechanics [9], and in quantum physics [10].
The natural generalization of the Fermi model is a billiard with a time-dependent boundary
[11–16]. Perhaps the most straightforward of such generalizations is the breathing circular
billiard [12]. The model consists of a classical particle confined in the region defined by a
circle with time-dependent radius. The particle collides elastically with the boundary and due
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to the time dependence of the boundary, the particle gains or loses energy at the collision
instants. The particle velocity is described in terms of polar coordinates Vr and Vθ . Due to the
angular momentum conservation [12] Vθ is a constant. No Fermi acceleration was found for
the breathing circle [12]. Depending on how the boundary moves, a time-dependent ellipse
presents this phenomenon [17] or not [11]. On the other hand, the unlimited energy growth
was observed in the Lorentz-type dispersing billiards [13, 14] and in the annular billiard
[15, 16]. A recent overview and discussion of Fermi acceleration in billiards can be found in
[18].

In this work we investigate a simplified breathing circular billiard (SBCB), in which we
neglect the displacement of the boundary. However, the momentum transference between the
wall and the particle occurs normally. In general, this kind of simplification preserves the main
properties of the phase space, speeds up the numerical calculations and allows us to obtain
analytical results more easily than for the complete version [3, 7, 19].

In the limit situation where the amplitude of oscillation of the radius is zero, the SBCB
reduces to the static circular billiard and the value of Vr immediately after each collision
is constant. In this case the system is integrable and does not present chaotic behavior.
The time dependence, however, introduces a nonlinear interaction between the particle and
the boundary. Now the system presents regions of regular motion, elliptical fixed points
surrounded by islands of regular motion and spanning curves. One of these curves limits the
chaotic sea of lowest energy and it is called the first invariant spanning curve (FISC).

We present some properties of the phase space of SBCB and describe the position of the
FISC in terms of (i) the oscillation amplitude of the boundary and (ii) Vθ . By expanding the
time between two collisions in a Taylor series for the radial component of velocity, we show
that, near the FISC, the mathematical description of SBCB map is locally equivalent to the
standard map [20].

Near the transition from the integrable to the non-integrable regime the dynamics of
SBCB is critical and the system presents scaling behavior. In limit of small values of the
oscillation amplitude, we obtain the scaling description for the average of the squared value
of the radial component velocity. Scaling descriptions for some one-dimensional systems, as
the Fermi–Ulam model [21–23], time-dependent wells [24] and also potential barriers [25],
can be found in the literature. A waveguide model and the bouncer model were also described
under scaling analysis [8, 26]. Since the system dimensionality is, in general, very relevant for
the determination of scaling exponents, it is natural to investigate a two-dimensional system
and compare its exponents with the ones obtained for one-dimensional models. We investigate
the situation when the tangential component of the velocity is smaller than a critical value.
We also discuss the difficulties in obtaining the scaling description for big values of Vθ . For
values of Vθ small enough, we show that the scaling exponents of SBCB are the same as those
of the Fermi–Ulam model [21] near the integrable to non-integrable transition.

This paper is organized as follows. In the next section we describe the model and some
of its phase-space properties. In section 3 we present some semi-analytical results for the
FISC showing that the map of SBCB is locally equivalent to the standard map. In section 4
we present the scaling description of SBCB. Finally, in section 5 we draw a summary of our
conclusions.

2. The simplified circular model

The model under analysis consists of a classical particle confined in a region delimited by
a circle. The boundary is time-dependent and its position varies around r0 according to
r(t ′) = r0 + ε cos(ωt ′ + δ0), where ε is the amplitude of oscillation, ω is the frequency and δ0
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Figure 1. The breathing circular billiard and some of its variables.

the initial phase. It is appropriate to define the dimensionless variables R(t ′) = r(t ′)/r0, t =
ωt ′, δ = ωt ′ + δ0 and ε = ε/r0. In figure 1, the breathing circular model as well as some of
the dimensionless variables of the system are displayed. The variable θn furnishes the angular
position of the particle after the nth collision. The variable αn is the angle between the velocity
�Vn and the line tangent to the circle at θn. In terms of θn and αn we have the direction of the
vector velocity �Vn. Due to the symmetry of the model, for a given α0 all possible values of
θ0 are equivalent. Similarly a clockwise (Vθ > 0) or an anticlockwise motion of the particle
(Vθ < 0), for the same |Vθ |, does not affect the properties of the system.

We study a simplified version of the model in which we neglect the displacement of
the boundary. Due to the momentum angular conservation, the tangential component of the
velocity does not change in the collision. Thus we have that Vθ,n+1 = Vθ,n = Vθ , with Vθ

being a constant of motion. For the SBCB the radial component of the velocity of the particle
immediately after a collision is always negative. In terms of dimensionless variables we
describe SBCB by the map

�Vn+1 = −∣∣−V (n)
r − 2ε sin δn+1

∣∣r̂ + Vθ θ̂, δn+1 = δn + �δn+1 mod 2π, (1)

where V (n)
r = −Vn sin(αn + θn − θn+1) is the radial component of the velocity immediately

before the (n+ 1)th collision. Vn is the modulus of �Vn (the velocity after the nth collision), and
r̂ and θ̂ are the radial and angular unitary vectors. Furthermore the quantity �δn+1 represents
the time between two collisions, namely

�δn+1 = Rn+1

Vn

. (2)

Here Rn+1 is the distance traveled by the particle between the nth and the (n + 1)th collisions.
It can be expressed as follows:

Rn+1 =
√

2[1 − cos(θn+1 − θn)]. (3)

The variable αn and the components of �Vn are related by

tan αn = −Vr,n/Vθ . (4)

To obtain the value of θn+1 we solve the transcendental equation f (θn+1) = 0, where f (θn+1)

is given by

f (θn+1) = sin θn+1 − sin θn + cot(αn + θn)(cos θn+1 − cos θn). (5)

For ε = 0 the quantities θn+1 − θn and the radial component of velocity immediately after
each collision are constants and the system is integrable. For ε �= 0, however, the system is
nonlinear and the phase space presents regions of chaotic motion. The main focus in this work

3
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Figure 2. Phase space of SBCB for ε = 10−4 and (a) Vθ = 10−3, (b) Vθ = 5 × 10−3 and
(c) Vθ = 1.7 × 10−2. (d) Maximum absolute value of the radial component of velocity as a
function of ε, when the particles are in the lowest chaotic region. (e) Dependence of Vθc on ε.

is on deriving the scaling properties describing this integrable to non-integrable transition.
Such an analysis is important because it allows us to compare the scaling descriptions of both
one- and two-dimensional versions of the Fermi–Ulam model.

For Vθ small enough the phase space of SBCB is similar to the one-dimensional version.
Figure 2(a) shows the phase space of the SBCB for Vθ = 10−3 and ε = 10−4. In limit of
small values of Vr the phase space presents a mixed structure with a chaotic sea surrounding
islands of regular motion. A lowest energy spanning curve, the FISC, limits this chaotic sea.
For values of Vr above this spanning curve there are also other observed chaotic regions and
islands. We focus the analysis on the lowest energy chaotic region.

The value of Vθ affects the phase space. For ε = 10−4 and Vθ = 5×10−3 we observe that
the originally broad chaotic sea of figure 2(a) splits into minor chaotic regions, as displayed
in figure 2(b). This result is a consequence of birth of invariant spanning curves separating
the chaotic regions. Thus the position of the first invariant curve depends on the value of
Vθ . Figure 2(c) shows the structure of the lowest chaotic sea and the FISC for ε = 10−4 and
Vθ = 1.7 × 10−2. Each initial condition in figures 2(a)–(c) was iterated 107 times.
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In order to obtain an estimate of the size of the lowest chaotic region for different values
of Vθ we iterated the map, equation (1), 106 times for an initial condition in the chaotic sea
with an initial radial component of the velocity Vr0 = 10−6. Performing this analysis for a
fixed value of ε and different values of Vθ we obtained the maximum absolute value of the
radial component of the velocity Vrmax for the lowest chaotic region. Figure 2(d) illustrates
the procedure for two values of ε. For small values of Vθ we observe that the value of Vrmax is
essentially constant. For each value of ε there is a value Vθc so that for Vθ < Vθc the quantity
Vrmax basically does not depend on Vθ . For Vθ � Vθc the chaotic regions are so close that
numerical errors eventually link them giving the irregular behavior of Vrmax that we observe in
figure 2(d). Finally, for values of Vθ large enough Vrmax presents a slow increasing followed
by a decreasing (figure 2(d)). For very large values of Vθ , not displayed in the figure, the
value of Vθ becomes much larger than Vrmax. Furthermore the quantity θn+1 − θn ≈ 0 and,
according to equation (3), Rn+1 ≈ 0 as well. Therefore in limit of very large values of Vθ

the map does not work efficiently because a large number of collisions must occur to provide
a small displacement in variable θ . By varying Vθ we obtain Vθc for different values of ε.
Figure 2(e) displays the result of this analysis. We have that Vθc ∝ εη, where η = 0.64±0.01.

3. Local equivalency between the SBCB map and the standard map

In this section we present a semi-analytical approximation for the localization of FISC position
in the phase space of the SBCB. Similar procedures were employed in [7, 19] for the one-
dimensional version of the Fermi–Ulam model. However for the SBCB we must take into
account the dependence of the FISC on both parameters ε and Vθ .

We define V ∗
r as the characteristic value of the radial component of the velocity near the

FISC. Then we expand �δn+1, equation (2), in Taylor series for Vr,n ≈ V ∗
r . Thus we have,

until first order,

�δn+1 ≈ Rn+1

Vn

∣∣∣∣
Vr,n=V ∗

r

+
∂�δn+1

∂Vr,n

∣∣∣∣
Vr,n=V ∗

r

(Vr,n − V ∗
r ), (6)

where

∂�δn+1

∂Vr,n

= V −1
n

∂Rn+1

∂Vr,n

+ Rn+1
∂V −1

n

∂Vr,n

. (7)

Note that the models can only be locally equivalents. Therefore we assume that the quantity
(Vr,n −V ∗

r ) is small enough and we neglect the terms of order higher than the first in the Taylor
expansion. From equation (3) we obtain the first derivative of the right-hand side of the above
equation

∂Rn+1

∂Vr,n

= sin(θn+1 − θn)

Rn+1

∂θn+1

∂Vr,n

. (8)

In order to obtain ∂θn+1/∂Vr,n we employ equation (5) and evaluate ∂f/∂Vr,n = 0. This
procedure furnishes

∂θn+1

∂Vr,n

= −[sin αn csc(αn + θn − θn+1) − 1]
∂αn

∂Vr,n

. (9)

It follows from equation (4) that

∂αn

∂Vr,n

= − Vθ

V 2
n

, (10)

5
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where V 2
n = V 2

θ + V 2
r,n. Thus, defining

�n+1 = sin(θn+1 − θn)

Rn+1
[sin αn csc(αn + θn − θn+1) − 1] (11)

equation (8) becomes
∂Rn+1

∂Vr,n

= �n+1
Vθ

V 2
n

. (12)

We obtain the second derivative of equation (7) in a more straightforward way,

∂V −1
n

∂Vr,n

= −Vr,n

V 3
n

. (13)

Substituting equations (12) and (13) into equations (7) and (6) we have

�δn+1(Vr,n ≈ V ∗
r ) = R∗

n+1

V ∗ +
�Vr,n

V ∗3
(�∗

n+1Vθ − R∗
n+1V

∗
r ), (14)

where V ∗ =
√

V ∗2
r + V 2

θ ,�Vr,n = Vr,n − V ∗
r , and R∗

n+1 = Rn+1 evaluated at Vr,n = V ∗
r .

Evaluating equations (3) and (11) numerically we observe that Rn and �n are essentially
constant over the first invariant curve. Therefore we define R∗ = R∗

n and �∗ = �∗
n in the first

invariant for all values of n.
Due to the symmetry of SBCB, the radial component of the velocity of the particle

immediately after the nth collision, Vr,n, and immediately before the (n + 1)th collision, V (n)
r ,

are related by V (n)
r = −Vr,n. Since Vθ is constant and Vr,n � ε in the FISC, we can write that

Vr,n+1 = Vr,n − 2ε sin δn+1. (15)

Combining the above equation with Vr,n = V ∗
r + �Vr,n we find the following expression:

�Vr,n+1 = �Vr,n − 2ε sin δn+1.

Multiplying both sides of the above equation by (�∗Vθ − R∗V ∗
r )/V ∗3 and adding R∗/V ∗ to

both sides we have
R∗

V ∗ +
�Vr,n+1

V ∗3
(�∗Vθ − R∗V ∗

r ) = R∗

V ∗ +
�Vr,n

V ∗3
(�∗Vθ − R∗V ∗

r )

− 2ε

V ∗3
(�∗Vθ − R∗V ∗

r ) sin δn+1. (16)

Comparing equations (14) and (16) we define In = �δn+1 to find

In+1 = In − Kc sin δn+1, (17)

where

Kc = Kr + Kθ, Kr = − 2ε

V ∗3
R∗V ∗

r and Kθ = 2ε

V ∗3
�∗Vθ . (18)

We evaluated numerically R∗ and �∗ as well as Kr and Kθ for both Vθ < Vθc and Vθ > Vθc,
as shown in figures 3(a) and (b), respectively. In figure 3(a) we employed Vθ = 10−4 (< Vθc).
We observe that R∗ ≈ 2 for ε ∈ [10−5, 10−3] while |�∗| 
 R∗. This implies that |Kθ | 
 Kr .
Moreover Kc is essentially constant with the average value Kc = 0.934±0.008. In figure 3(b)
we used ε = 10−5 and different values of Vθ for Vθ > Vθc. We observe that when Vθ grows,
R∗ goes to zero and �∗ increases in absolute value. It follows that Kr approaches zero while
Kθ grows. However, the quantity Kc = Kr + Kθ is basically constant. The average value in
this limit is Kc = −0.92 ± 0.02.

For Vθ < Vθc we have that Kc > 0 and for Vθ > Vθc we have that Kc < 0. Therefore,
near the FISC we define a new variable φ and describe the SBCB as

In+1 = In ± Kc sin φn, φn+1 = φn + In+1, (19)

6
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Figure 3. Plot of the values of K, R∗ and �∗ as functions of (a) ε for Vθ < Vθc (Vθ = 10−4) and
(b) Vθ (Vθ > Vθc) for ε = 10−5.

where the plus and minus signals in I expression correspond, respectively, to the situations
Vθ < Vθc and Vθ > Vθc. Moreover,

φn =
{
δn+1 − π, for Vθ < Vθc

δn+1, for Vθ > Vθc.
(20)

Therefore the map that describes the SBCB is locally equivalent to Chirikov’s standard
map [20]. The signal of Kc changes abruptly at Vθc and a relation between the variables φ

and δ is less direct for Vθ = Vθc. Figures 2(a) and (c) display the phase space of SBCB for
the regimes Vθ < Vθc and Vθ > Vθc, respectively. We stress that we cannot employ arbitrary
large values for Vθ because of the numerical limitation of the map.

4. Scaling description

Before starting the scaling analysis, let us define the quantities of interest. We define the
average of the squared velocity along an orbit as

V 2
r,j (n) = 1

n + 1

n∑
i=0

V 2
r,j i .

7
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Figure 4. V 2
r curves as function of n (a) for ε = 10−3 and different values of Vθ , and (b) for

different values of ε and Vr0 with Vθ = 10−4.

Considering an ensemble with M different initial values of δ0, we evaluate the average quantity
as follows:

V 2
r (n) = 1

M

M∑
j=1

V 2
r,j (n). (21)

We also used random values for θ0 but due to the symmetry of the model it does not represent
an important detail. Similarly, we always employed positive values of Vθ because the results
are affected only by different values of |Vθ |.

We already know from the previous section that the position of the first invariant spanning
curve does not depend on Vθ for Vθ < Vθc. For ε = 10−3 we observe in figure 2(d) that
Vθc ≈ 10−2. Thus, evaluating the average quantity defined in equation (21), we present in
figure 4(a) some curves of V 2

r as function of n for ε = 10−3 and different values of Vθ < 10−2.
We observe that all V 2

r curves in figure 4(a) are essentially the same because the values of Vθ

are smaller than Vθc. Therefore we use Vθ = 10−4 in the next simulations to guarantee that
Vθ < Vθc for all values of ε employed in the scaling description.

Figure 4(b) shows the behavior of the average quantity V 2
r defined in equation (21) for

different values of ε and Vr0 as shown in the legend. When the values of Vr0 are small enough,
we observe that the V 2

r curves grow for small values of n and reach saturation regimes for
large n. We define nx as the value of n that characterizes the changeover from growth to the
saturation regime.

8
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For Vr0 > ε (see figure 4(b)), the V 2
r curves are essentially constant for small values of n.

Subsequently, the V 2
r curves grow and approach the V 2

r curves originated from small Vr0. The
switching from the initial constant value regime of V 2

r to the growth regime characterizes the
crossover value n′

x . Similarly, we define n′′
x as the value of n characterizing the changeover

from the growth to the saturation regimes. We also observe in figure 4(b) that nx ≈ n′′
x .

Moreover the asymptotic regime does not depend on Vr0.
For Vr0 < ε and small values of n the average V 2

r depends on both n and ε. Thus, for
n 
 nx we write

V 2
r (n, ε) ∝ nαεγ , (22)

where α is the growth exponent and γ establishes the dependence of V 2
r on ε for small values

of n. Performing fittings in the growth regime for eight values of ε in range [10−5, 2 × 10−3],
we obtained the average value α = 0.995 ± 0.008. The best fit in the V 2

r /nα versus ε plot,
displayed in figure 5(a), furnishes γ = 2.01 ± 0.01.

We observe in figure 4(b) that the saturation value V 2
rsat depends only on ε. Therefore we

write

V 2
rsat ∝ εβ, (23)

where β is the saturation exponent. We obtained the saturation value V 2
rsat by extrapolation of

the V 2
r curves in limit of large n. Figure 5(b) displays the best fit in a V 2

rsat versus ε plot. This
procedure furnishes β = 1.013 ± 0.004.

The crossover iteration number nx depends on ε as

nx ∝ ε−z, (24)

where z is the dynamical exponent. The intersection between the growth regime and the
saturation value V 2

rsat furnishes the crossover value nx for each value of ε. Figure 5(c)
shows the ε-dependence of the crossover value nx . The best fit to the numerical data gives
z = 0.958 ± 0.008.

With equations (22)–(24) and the values obtained above for the exponents α, γ , β and
z we are ready to start the scaling description. Assuming that the average quantity V 2

r is a
generalized homogeneous function of variables n, ε and Vr0, we can write that

V 2
r (n, ε, Vr0) = lV 2

r (lan, lbε, lcVr0), (25)

where l is an arbitrary scaling factor and a, b and c are scaling exponents. Choosing l = n−1/a

the above equation becomes

V 2
r (n, ε, Vr0) = n−1/aV 2

r (1, n−b/aε, n−c/aVr0)

∝ n−(1+xb)/aεxf (n−c/aVr0). (26)

When Vr0 < ε, we should have that f (n−c/aVr0) is a constant for n 
 nx (see figure 1(b)).
Comparing equations (22) and (26) we find x = γ and −(1 + xb)/a = α.

Choosing l = ε−1/b equation (25) becomes

V 2
r (n, ε, Vr0) = ε−1/bV 2

r (ε−a/bn, 1, ε−c/bVr0)

∝ ε−1/bg(ε−a/bn, ε−c/bVr0). (27)

In limit of large n the V 2
r curves do not depend either on Vr0 or on n (figure 1(b)). In this case

g is a constant. Therefore, comparing equations (23) and (27) we find −1/b = β.
For Vr0 < ε the V 2

r curves do not depend on Vr0. In this way, we have from equation (27)
that the crossover value nx is given by

nx ≈ εa/b. (28)

Comparing equations (24) and (28) we find z = −a/b.
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α

Numerical data
Best fit

V
r

2/n α∝ε γ

γ =2.01±0.01

(a)

1×10−5 1×10−4 1×10−3

ε
1×10−5

1×10−4

1×10−3

V r2 s a
t Numerical data

Best fit

V
r

2
sat

∝ε β

β =1.013±0.004

(b)

1×10−5 1×10−4 1×10−3

ε
1×102

1×104

1×106

n x

Numerical data
Best fit

n
x
∝ε−z

z=0.958±0.008

(c)

Figure 5. (a) Plot of V 2
r /nα as a function of ε for n 
 nx , (b) the ε-dependence of the saturation

value V 2
rsat and (c) the crossover value nx versus ε. The best fits to the numerical data furnish,

respectively, γ = 2.01 ± 0.01, β = 1.013 ± 0.004 and z = 0.958 ± 0.008.

For Vθ < Vθc we have that R∗ ≈ 2 and that Kr is basically a constant, figure 3(a).
Moreover Kθ is negligible and V ∗

r � Vθ . By employing equation (18), we can write that

4ε

V ∗2
r

= 4ε′

V ′∗2
r

= 4lbε

l2cV ∗2
r

,
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r0=−101/2×10−3

ε=10−4, V
r0=−10−3

ε=10−5, V
r0=−10−1/2×10−3

l=ε−1/b=ε β; l
a=ε−a/b=εz

a=z/(γ−αz)=0.91±0.03
b=−1/ β =−0.987±0.004

α=0.995±0.008
β =1.013±0.004
γ =2.01±0.01
z=0.958±0.008

(a)

1×10
0

1×10
2

1×10
4

1×10
6

1×10
8

n
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-9

1×10
-7

1×10
-5
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-3

V r2

ε=10−4, Vθ=1.63×10−2

ε=5×10−4, Vθ=3.64×10−2

ε=10−3, Vθ=5.41×10−2

(b)

Figure 6. (a) Collapse of the V 2
r displayed in figure 4(b) for Vθ < Vθc . (b) V 2

r curves for Vθ > Vθc .

where c = b/2. Figure 6(a) shows the collapse of the V 2
r curves originally displayed in

figure 4(b) with l = ε−1/b. Thus, for Vθ < Vθc we have the scaling exponents set

a = z/(γ − αz) = 0.91 ± 0.03

b = −1/β = −0.987 ± 0.004

c = b/2 = −0.494 ± 0.002.

(29)

The limit situation Vθ = 0 reduces the system to the one-dimensional Fermi–Ulam model.
Thus for Vθ → 0, it is expected that the scaling description of SBCB is the same as that of the
Fermi–Ulam model. On the other hand, the dimension of the system is, in general, relevant to
determine the scaling exponents. Since for the simplified one-dimensional Fermi–Ulam model
the scaling exponents are a = 0.99 ± 0.03, b = −0.977 ± 0.006 and c = −0.489 ± 0.003
[21, 22], we observe, within the uncertainties, that both one- and two-dimensional versions of
the Fermi–Ulam model are basically described by the same exponent set.

We also evaluated the average quantity V 2
r for Vθ > Vθc. Figure 6(b) displays the results

for different values of ε and Vθ > Vθc, as indicated in the legend. The chosen initial conditions
that generated each curve in figure 6(b) belong to the chaotic sea of SBCB. In limit of big values
of Vθ we observe numerically that there are regions in the chaotic sea where the trajectories
remain for a large number of collisions. Such a behavior affects the average quantity V 2

r

11
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originating the irregular curves that we observe in figure 6(b). Thus the values of saturation
V 2

rsat and crossover nx cannot be satisfactorily obtained, as well as the scaling exponents.

5. Summary

We studied some properties of the lowest energy chaotic sea of the SBCB. The system is
described by two control parameters, Vθ and ε. The position of the FISC depends on both Vθ

and ε. For each value of ε there is a Vθ = Vθc where the size of the lowest chaotic region
changes abruptly. For Vθ < Vθc the position of the FISC does not depend on Vθ and for
Vθ > Vθc the chaotic sea breaks into minor chaotic regions separated by spanning curves. For
Vθ � Vθc these chaotic regions are very close and even numerical errors eventually merge
them. Moreover we cannot use arbitrary large values of Vθ in the SBCB because the particle
has only a small displacement in the circle even for a very large number of collisions.

By using a first-order expansion in the Taylor series, near the FISC with Vθ < Vθc and
Vθ > Vθc, we showed that appropriate variable transformations locally turn the SBCB map
into the standard map.

We employed scaling analysis to describe the average properties of the SBCB low energy
chaotic sea. The exponents describing the scaling of SBCB for Vθ < Vθc are essentially
the same as those of the one-dimensional version of the Fermi–Ulam model [21, 22]. This
is an unexpected result, if we consider that dimensionality is, in general, very important to
determine scaling exponents. On the other hand, this result is consistent with the fact that
the SBCB is equivalent to the Fermi–Ulam model when Vθ → 0. For large values of Vθ ,
we observe regions in the chaotic sea where orbits remain for a large number of collisions .
Thus for Vθ > Vθc, we were not able to obtain the scaling properties of the SBCB due to the
irregular behavior of the V 2

r curves for large values of n.

Acknowledgments

D G L thanks Conselho Nacional de Desenvolvimento Cientı́fico, CNPq, for financial support.
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